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Abstract 

 
The focus of this research is using system dynamics modeling to evaluate the 

impact of missed scheduled maintenance due to budgetary constraints.  Missed 

maintenance cannot be made up and the benefit to the facility’s serviceability is lost.  

The cumulative effect on an entire facility’s life span is that it is unable to reach its 

designed life expectancy.  Replacement construction costs are hundreds, thousands, 

or millions times more than the annual maintenance repair costs.  Therefore, Air 

Force civil engineers must be capable of evaluating maintenance strategies in a 

dynamic environment to determine the budget strategy’s prolonged effect on 

infrastructure serviceable life.  The results of the evaluation demonstrate how five 

major categories of infrastructure maintenance budgets change infrastructure’s 

serviceable life.  The modeling process provides considerable insight into these 

budget methods that must be considered to determine what is best for the 

infrastructures serviceable life.    
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DYNAMIC MODELING AND EVALUATION OF RECURRING 
INFRASTRUCTURE MAINTENANCE BUDGET DETERMINATION 

METHODS 
 

 

I.  Introduction 
 

Background 

Base infrastructure and facilities are an integral part of every Air Force 

installation; they provide the platform, from which the Air Force trains, equips, deploys, 

and fights.  From this perspective, facilities and infrastructure are defined as “… all 

existing buildings and other base utilities and pavements used to support the existing 

mission and normal growth of the base” (Air Force Pamphlet 32-1004, 2004).   It is 

important to recognize that the phrase “normal growth” implies a system that must adapt 

to the changing environment and cannot be frozen in time.  Although facilities and 

infrastructure are continuously degrading, they must remain at a serviceable level to meet 

the mission requirements of the Air Force.  

The Air Force tracks infrastructure readiness through Infrastructure Readiness 

Reports (IRR).  This report shows the commander’s assessment of how well the base 

infrastructure meets the mission requirements.  It is a tool that measures the ratio of 

programmed project dollars against the overall replacement value of the infrastructure.  

In other words, it is a tool that uses a constructed proxy measurement to assess base 

condition.  However, this assessment may or may not represent the serviceability of the 

base’s infrastructure since it focuses on replacing infrastructure rather than maintaining it.  

Furthermore, the tool provides no indication of how well the base is managing the aging 
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process of its facilities.  Yet the Air Force uses this tool to make decisions regarding base 

infrastructure maintenance and renewal funding. 

Without a proper emphasis on maintenance, a base’s civil engineering recurring 

maintenance program will not be effective at preserving the serviceability and longevity 

of the infrastructure.   Budgeting to prevent degradation is extremely difficult and the 

budget must be closely evaluated.  To help adequately assess and develop infrastructure 

maintenance budgets, a dynamic evaluation strategy capable of looking at an entire 

system of interactions is necessary.  This research effort tackles that dynamic evaluation 

by examining various budgeting methods and how they interact with the infrastructure 

serviceability.   

The serviceability of a facility is the measure of the capability of the item to meet 

its mission requirement.  Note the concern here is not designed purpose, but rather the 

mission requirement.  Many older facilities have seen the activity housed in them change 

dramatically throughout the years and no longer function as originally designed; 

however, the facility still plays a vital role in meeting the installation’s mission 

requirement.  Therefore the serviceability is a paramount concern when looking at 

facilities and infrastructure.   

Infrastructure, from the time of initial construction until final demolition, is in a 

state of degradation eroding the facility’s serviceability.  Some of the contributing factors 

to the magnitude of the degradation are climate, use, abuse, neglect, mission changes, and 

technological advancement.  Degradation may be invisible to the facility user and 

maintainer until it manifests itself in failures and breakdowns.  Inoperable heat or air 

conditioning systems, broken doors and windows, leaking roofs, and holes in the walls 
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are very notable failures that bring facility degradation to the user’s attention.  Proper 

preventative maintenance actions can lessen the impact of this degradation and prolong 

the serviceable life span of the facility.   

Often preventive maintenance is cyclical in nature and must be performed on a 

schedule.  Therefore, preventive maintenance is often called recurring maintenance.  

Preventive maintenance is extremely important to the infrastructure or facility’s 

longevity.  Consider the example of a vehicle.  The value of an engine oil change, tire 

rotation, and chassis lube is directly connected to the life expectancy of a vehicle and is 

not questioned.  Likewise, infrastructure and facilities have well known recurring 

maintenance activities.  They include tasks such as greasing mechanical systems, sealing 

windows and doors, and tightening of electrical connections.  These scheduled yearly, 

quarterly, monthly, or weekly actions can often seem meaningless and unimportant to the 

casual observer in terms of the serviceability of the overall facility.  These preventive 

actions are often overshadowed by other competing priorities that utilize the funding or 

man hours required for their completion.  If a preventive maintenance item is missed it 

cannot be made up by completing the action twice in the next week, month, or year.  The 

benefit of the preventive maintenance is lost, and the degradation goes unchecked 

dropping the serviceability of the facility.     

But what was the value lost with regard to the overall facility or infrastructure 

system serviceability?  Ultimately, the facility’s life span is shortened since the facility’s 

serviceability no longer meets mission requirements.  For example, the value of an 

unexercised valve is only realized when a water main leak is unable to be isolated, and a 

pump that has not received its proper preventive maintenance is only a concern when 
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there is no longer heat in the facility.  While these failures have fixed repair costs, what 

was the impact or loss of serviceability to the entire system or facility?  The loss of 

serviceability leads to a shortened life span for the facility and the replacement date was 

just moved forward.   

Modern construction practices drive replacement costs hundreds, thousands, or 

millions of times more than the repair cost or the missed routine maintenance costs.  This 

high increase in replacement cost led General Michael E. Ryan to say in the Air Force 

Magazine (December 2000), “…we are on a 250-year replacement cycle for our 

infrastructure, where our people work and live.”  The job for the Air Force civil engineer 

is to development a facility/infrastructure maintenance budgetary strategy that will 

prolong the life of the infrastructure enabling the Air Force to continue meeting its 

mission objectives.   

Budgetary decisions for preventive maintenance are complex and involve several 

interrelated influences, which can be called a system.  In order to evaluate budgetary 

strategies, the entire system from budget constraints, preventive maintenance, 

infrastructure and facility degradation, to the feedback loops that create the maintenance 

budget, must all be evaluated simultaneously.  If you evaluate the individual components 

of the system false results could result.  Therefore, to evaluate the infrastructure 

maintenance budgetary system, one must look at the entire system in a dynamic 

environment.     
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Research Question 

 The main objective of this research is to more accurately prescribe and evaluate 

facility/infrastructure preventive and recurring maintenance policy that will extend the 

serviceable life while complying with Air Force budgetary constraints.  To answer this 

question this research will be guided by the following investigative questions.  

 

Investigative Questions 

1. What models for facility/infrastructure maintenance budgeting exist? 

2. What are the feedback loops that influence infrastructure maintenance? 

3. What is/are the typical lifecycle serviceability behavior patterns for base 
infrastructure and facilities? 

 
4.   What are the controllable influences on the lifecycle serviceability 

behavior patterns?   
 
5. What is the existing Air Force policy on the controllable influences? 

6. Is the policy preserving the Infrastructure for mission objective 
sustainment? 

 
7. Can a facility-specific dynamic method be developed that substantially 

improves serviceability of Air Force facilities and infrastructure giving a 
more accurate picture of the cost of incomplete preventive maintenance?  

 
 

Proposed Methodology 

1.  Conduct a literature review on current AF and public facility and infrastructure 

recurring maintenance programs, condition assessment programs, and life cycle 

cost analyses to identify a frame work for construction of an evaluation metric. 

2.  Use the system dynamics paradigm of logic to construct a model to evaluate 

the achievable long-term impacts of varying maintenance management policies. 
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3.  Evaluate the different methodologies of maintenance practices to formulate 

optimum recurring maintenance budgetary policies using the constructed model. 

 

Limitations 

Serviceability of a facility or infrastructure system is a subjective measure.  It is 

therefore not easily defined or measured.  The impact of loss of serviceability is evident 

but is also difficult to quantify.  Therefore these two measures are very soft variables that, 

using system dynamics, can be evaluated in time but cannot make specific inferences 

about their quantifiable amount.  The effort will be limited to exploring more optimum 

behavior patterns for serviceability that will lead to longer serviceable life. 
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II.  Literature Review of Facility Infrastructure Maintenance and Repair Budget 
Estimation Modeling 

 

Infrastructure facilities generally have long service lives, typically between 30 

and 70 years.  This life span figure is used by designers and planners for cost-benefit and 

other calculations with little to no regard for the required serviceability.  Seldom is any 

meaningful calculation of life-cycle analysis accomplished, and these figures result more 

from so-called standard practice than from design initiatives (Lemer, 1996).  

Measuring a facility’s or infrastructure’s performance over its service life is 

paramount.  The measure of a facility’s performance is generally measured in dimensions 

of effectiveness, reliability, and cost (Lemer, 1996).  Lemer defines effectiveness as the 

degree to which the infrastructure meets the demands or requirements of the owners, 

users, and neighbors.  Accurate measurement of this effectiveness in economic or 

financial terms is extremely difficult due to the lack of a direct link between the owner’s, 

user’s, and neighbor’s satisfaction and the remaining serviceability of the infrastructure 

and facility.  Reliability is defined as the probability that the serviceability of a given 

facility or infrastructure item will be sustained throughout the entire design lifetime.  

Reliability is extremely dependent on the preventive maintenance performed.  The 

preventive maintenance in-turn drives the cost measurement.  Cost, often referred to as 

‘life-cycle cost’ encompasses the resources necessary to plan, design, construct, operate, 

maintain, and convert the facility to a new use or demolish the facility (Lemer, 1996).  

Individual owners, users, and neighbors establish a comprehensive set of measurements 

for effectiveness, reliability, and cost that are acceptable to them.  This metric set can be 
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translated into a minimum acceptable performance level.  Lemer graphically represented 

performance over time as shown in Figure 1. 

 

Figure 1  Lemer Performance Behavioral Pattern 
 

 
 In the figure above, Lemer shows that the performance of a building holds 

relatively constant over a large part of its lifespan and then sharply drops in the latter 

stages of its life.  Lemer makes the assumption that during an infrastructure’s lifecycle, 

the performance remains at a high level for years barring a catastrophic failure.  Lemer 

also assumes proper maintenance occurs and use levels are at designed loads.  This initial 

phase is followed by a period of decline due to wear and aging that eventually and 

inevitably overtake maintenance.  The declining performance is most notable to 

maintenance personnel at first and users second.  The users often find work a rounds or 

alter their work or behavioral patterns to compensate for the decline.  As the deterioration 

of the facility or infrastructure continues, eventually the minimum acceptable level is 

Optimal Performance 

Min Acceptable Performance 

Infrastructure Designed Life 

Changed Min Acceptable 
 Performance 

Time (years) 
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reached.  However, this is not the end of the facility’s life.  The final renovation, 

replacement, or retirement decision for a facility by the owner is a political decision that 

involves a wealth of debate as to whether the condition of the facility or infrastructure is 

truly unacceptable and to what degree (Lemer, 1996).  

 In Figure 1, Lemer also demonstrates a possible change to the minimum 

acceptable serviceability.  Lemer accounts for this change with four factors.  The first is 

technological changes that dictate larger dimensions or make systems obsolete.  The 

second factor is regulatory changes that impose new requirements, thereby causing the 

facility or infrastructure to need a renovation or modification.  The third element Lemer 

discusses is economic or social changes.  These are more subjective in nature and more 

difficult to define.  The best example is a farmer’s coop may no longer be needed in a 

suburban neighborhood now surrounding it due to urban sprawl.  The last factor Lemer 

accounts for is the behavioral change of the user and or owner of the facility.  Behavioral 

change means the user finds another preferable infrastructure.  This changes the 

infrastructure’s minimum acceptable level.  As an example, Lemer suggests the removal 

of a rail spur because of the shift in American culture preferring individual automobiles 

to public rail travel (Lemer, 1996).  These factors can work independently or all work 

together to change the minimum acceptable serviceability requirement. 

The key for users, owners and maintainers is ensuring the facility achieves the 

designed life-span.  In order to do this, infrastructure maintenance must be accomplished.  

In many cases, the operation to fix or repair the damaged infrastructure is very costly.  As 

a result, facility and infrastructure maintainers attempt to preempt these failures through 

preventive maintenance.   The concept of preventive maintenance is not new.  Its roots 
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date well back into the nineteen hundreds with the advent of the industrial age.  

Machines, used in place of large labor parties, introduced the need to maintain the 

machinery such that it would not undergo failure, and the idea quickly spread to facilities 

and infrastructure.  Today, the need for cyclic facility maintenance is well recognized.  

Sharp in his 2002 thesis stated,  

“companies that methodically identified their requirements and used those 
requirements as the basis for allocating funds to meet those requirements incurred 
the least impact from facility problems on their daily operations.”  In comparison, 
companies that allocated funds based on methods other than maintenance and 
repair (M&R) requirements typically under-funded those requirements, resulting 
in facilities that did not meet their needs.”   
 

Sharp (2002) conducted a case study of the top executives from several Fortune 500 

companies, most notably the Chrysler Company.   He concluded that successful 

companies recognize the need for preventive maintenance.  Organizations desiring 

continued success and mission sustainment must recognize preventive maintenance is 

needed and must not neglect their high investment of capital in infrastructure and 

facilities. 

The Department of Defense (DoD) is the largest public facilities and 

infrastructure owner in the United States, holding the deeds to approximately 80% of all 

public facilities and infrastructure (Ottoman, 1999).  The DoD fully utilizes its facilities 

and infrastructure for training, housing, and deploying military forces to promote the 

security of the nation.  As a result, the DoD commitment to the care and upkeep of its 

facilities is resolute.  The Air Force, as a DoD member, shares this commitment.  The Air 

Force has an established method to identify and fund Maintenance and Repair (M&R) 

requirements.  The Air Force’s method takes inputs from infrastructure users and 

maintenance staffs to identify infrastructure shortfalls and mission impacts resulting from 



 

11 

degradation.  As the mission impacts escalate they transform from mission impacts to 

mission failures, the issues are escalated to the engineering design staff, which is 

primarily charged with identifying, programming, designing, and construction of 

replacement needs.   

The Air Force’s budgetary support for facilities and infrastructure comes from 

two major sources of funding.  The first is Operations and Maintenance (O&M) funds. 

These funds are for preventive maintenance and repairs.  O&M funding levels are based 

on a percentage of the plant replacement value (PRV) of the base’s facilities and 

infrastructure (DoD, 1989).  The second major source of facility and infrastructure 

funding is Military Construction (MILCON) dollars.  MILCON funding is appropriated 

for specific replacement projects identified by the installation through programming 

documentation that is reported to Congress.  O&M and MILCON funding provide 

installations the means to maintain, replace, and grow their facilities and infrastructure to 

meet the installation’s mission requirements.  Appropriations for the military are under 

constant scrutiny and must be well defended.  Infrastructure and facility O&M and 

MILCON funding is not limitless.  It is constrained by Congressional appropriations and 

authorizations. 

The Air Force title for O&M is Real Property Maintenance Activities (RMPA) 

(Robinson, 2004).  These activities include demolition, real property services (RPS), and 

Sustainment, Restoration, and Modernization (SRM) (Robison, 2004).  Demolition is the 

disposal of excess or no longer serviceable facilities and infrastructure while RPS 

includes utility bills and service contracts (Robison, 2004).  Lastly is the SRM funding, 

which includes maintenance, repair, and construction of facilities and infrastructure done 
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by in-house forces and contractor forces.  The hierarchical structure of this funding is 

shown in Figure 2. 

   

 

 

 

 

 

 

 

 

 

Figure 2 Air Force Funding Hierarchical Structure (Robinson, 2004) 
 
 

Looking further into the SRM portion of the hierarchy, sustainment (FSM) is 

defined as annual maintenance and scheduled repair activities necessary to maintain the 

inventory of real property assets through its expected service life.  The other half of the 

SRM hierarchy is the Restoration and Modernization (FIM) portion (Robinson, 2004).  

Restoration is defined as the repair and replacement work to restore facilities damaged by 

inadequate sustainment, excessive age, natural disaster, fire, accident, or other causes 

(Robinson, 2004).  The Modernization part includes alterations of facilities solely to 

implement new or higher standards, regulatory changes, accommodation of new 

activities, or to replace building components that typically have a life expectancy greater 

than 50 years (i.e., foundations and structural members) (Robison, 2004).  Included in 
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restoration and modernization funding are alterations necessary to meet the demands of a 

new mission bed-down (Robison, 2004).  This terminology defines the vocabulary used 

by the Air Force in consideration of facility and infrastructure maintenance funding.   

The methods used in the facility and infrastructure maintenance industry are as 

diverse as the institutions and companies that use them.  Each has it own way of 

determining how much funding is to be placed into facility and infrastructure upkeep. 

The determination of how much funding is needed to complete these various activities is 

accomplished in one of four primary methods.  The four primary recognized categories of 

M&R or O&M budgetary methods are PRV methods, formula-based methods, life-cycle-

based methods, and condition assessment-based methods (Ottoman, 1999).   These four 

methods are not mutually exclusive; most individual user-specific methods are a hybrid 

of two or more of these methods growing out of the needs of the individual user 

(Ottoman, 1999).  For organization and classification, one can use these four major 

categorical headings to provide a label for organizing the various budget determination 

methods being used.  The following is a more detailed discussion of each of the 

individual methods and the internal influences upon which each rely to determine the 

M&R maintenance budget requirements.   

 

 

 

Plant Replacement Value (PRV) Methods 

The current method of choice for the Air Force to determine O&M funding is to 

assign budgets by taking a percentage of the estimated replacement construction cost of 
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the facilities or PRV.  The PRV approach to M&R budgeting is a function of the actual 

construction costs for a replacement facility (Ottoman, 1999).  To determine the M&R 

budget amount, one takes the replacement construction cost value and multiplies it by a 

given or assigned percentage.  The amount is the budgetary figure for the plant’s M&R.  

PRV’s fundamental premise is that it is intuitive to maintenance personnel and upper 

levels of management that larger, more complex facilities and infrastructure take larger 

M&R budgets to maintain (Ottoman, 1999).  PRV budgeting recognizes one can capture 

the complexity and size of a given infrastructure item by looking at the item’s 

replacement construction cost, giving way to a model for budgeting for M&R.  Different 

public and private institutions use different percentage functions to determine the value of 

the PRV percentage.  Table 1 shows the comparison of five major categories of 

institutions and their respective percentage of PRV given to M&R. 

 

Table 1 Annual Investment Levels as Percent of PRV (Barco, 1994) 

Organization New Construction 
(%) 

Maintenance 
and Repair (%) 

Total (%) 

Department of Defense (DOD) 1.6 1.4 3.0 
Public Works Infrastructure 
(waste disposal, transportation, 
and water) 

  4.5 

Major Colleges and universities 6.9 1.5 8.4 
Major Private corporations  5.4 3.5 8.9 
Non-DOD government entities 8.2 1.4 9.6 

Note:  Constant FY87 dollars. 
 
 

There are three key relationships that influence the PRV method: 1) the 

relationship between the construction replacement cost and the M&R budget, 2) the 

relationship between the decision making management and the percentage multiplier, and 
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3) the relationship between the complexity of a facility and its construction costs.  These 

relationships and influences define the PRV method. 

The PRV method is not without blemish, however.  One relationship not found in 

the PRV method is the tie between the cost of the maintenance activities and the budget.  

Whether this shortfall is just a perception or a factually based argument it is not well 

discussed.  But proponents of other budgeting methods definitely point out the lack of 

linkage between the actual tasks to be completed and the determined budget needs. 

 

Formula-Based Methods 

A formula-based method uses a mathematical expression made up of easily 

quantifiable variables.  The variables serve as descriptors of the base’s facilities and 

infrastructure serviceability condition, construction type, age, and other salient 

characteristics.  The results of the formula produce an estimation for the annual budgetary 

M&R requirements.  The expressions range from simple single-variable equations to very 

complex algorithms (Ottoman, 1999).  The level of complexity is user dependent.  Most 

formula-based methods include the use of cost factors for the facility’s given location 

(Ottoman, 1999).  The formulas are not for dictating how much to spend on any one 

building in any one year but rather are designed to estimate the M&R budget need for an 

entire facility system or a group of buildings (Sherman-Dergis, 1981). 

In the Dergis-Sherman Formula method, the annual budget appropriation is a 

combination of two distinctly different sets of factors.  Those relating to the building, 

facility, or infrastructure and those relating to the political arena in which the funding 

takes place (Sherman and Dergis, 1981).  There are three main characteristics that 
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Sherman and Dergis considered as the most critical building factors:  1) the size or extent 

of the physical plant, 2) the complexity of the plant, and 3) the age and history of the 

plant.   In order for a formula to accurately ascertain the amount of the budget needed, it 

must account for all of these factors (Sherman and Dergis, 1981).  Sherman and Dergis 

further state that formulas that have to operate in a political environment (where a 

governing funding body makes appropriation decisions) must also be generally 

applicable, simple to apply, easy to understand, self-adjusting, and reliable.  The budget 

value attained must be an index-inflated adjustment of the original cost of construction 

and of the building’s age corrected for partial building renovations (Sherman and Dergis, 

1981).   

The Sherman-Dergis formula for a facility or infrastructure item is expressed by 

the following: 

Annual M&R Appropriation = 2/3 * BV * BA/1275   

where:  

“Annual M&R Appropriation” is the amount of funding that should be provided 

in a given year of the facility’s life for M&R maintenance, 

“2/3” is the building renewal constant as determined by a 1971 University of 

Illinois study which showed that building renewal ought to cost, on the 

average, no more than two-thirds of the cost of new construction (Sherman 

and Dergis, 1981). 

“BV” is the building value as determined by updating the original construction 

costs using a recognized national building cost index, 
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“BA” is the building age as corrected for either partial or total building renewal, 

and 

“1275” is the age-weighting constant based on a fifty-year lifecycle.  This number 

is derived from the sum-of-the-years digits depreciation method.   

The key relationships from the Sherman-Dergis Formula approach are the relationships 

between inflation corrected construction cost, facility current age, and the building 

renewal factor to the annual M&R budget figure.  Here, as before with the PRV method, 

there is no direct link between facility condition and the budget determination, lending to 

the same criticism as the PRV method.     

 

Life-Cycle Methods 

The life-cycle estimation method depends on breaking the facility down into 

subsystems (Melvin, 1992).  Common subsystems include electrical; Heating, 

Ventilation, and Air Conditioning (HVAC); roofing; and exterior cladding.  The level 

used is once again dependent on the desires of the individual modeler.  Through the 

independent determination of the life-cycle for each subsystem, the known cost of their 

respective preventative maintenance tasks can be derived.  Using the derived tasks, 

further estimation of the M&R budget can be obtained by estimation of each individual 

task.  The result of the estimation is taken to represent the annual M&R costs for the 

entire facility (Melvin, 1992).  This method requires immense amounts of detailed data 

for each facility to be considered.  It is very facility dependent, and universal simulation 

applications are not practical.   
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Condition Assessment Methods 

The condition assessment method of determining M&R costs uses an actual 

condition survey of the facility to identify needed repairs.  Then a detailed cost estimate 

is prepared for these repairs.  The estimation of these repairs is then taken to represent the 

annual M&R budget.  The bottom line is that degradation of the facility has occurred and 

must now be repaired.  There are two aspects of the assessment process that might be 

used independently or together.  The first aspect depends not only on the current needs of 

the facility, but also attempts to predict future needs or repairs and capture their costs in 

the estimate as well.  The second aspect uses a backward-looking approach that includes 

the estimate of the previous year’s deferred M&R actions and the immediate needs to 

determine the estimate for annual M&R costs (Ottoman, 1999). 

The framework for a condition assessment is the index that the assessment uses 

for measurement of the infrastructure or facility.  Most approaches define the condition 

index of a given facility in terms of the facility’s ability to perform its intended function 

or a user-defined function (Chouinard, et al, 1996).  In order for this assessment to be 

practical, it must take visual observations, instrumentation readings, operational 

information, engineering computations, and/or engineering judgments, and, through the 

use of predefined rules, convert those observations into numerical values known as 

condition indices (Chouinard, et al, 1996).   This condition assessment then provides a 

snapshot of the facility condition in time (Chouinard, et al, 1996). 

There are several different published and established indices for facilities and 

infrastructure.  They include the pavement condition index (PCI) (Shanin, Darter, and 

Kohn, 1976; Shanin and Kohn, 1979), the roofing membrane condition index (MCI), the 
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roof flashing condition index (FCI) (Shanin, Bailey, and Brotherson, 1987), clay brick 

masonry walls (Uzarski et al, 1995), concrete masonry walls (Uzarski et al, 1995), and 

exterior closure components or the exterior finish (Uzarski et. al, 1995).  Inspections 

using these indices are conducted on a schedule prescribed by the user and maintainer to 

identify when and where facility and infrastructure maintenance must occur.  Uzarski et 

al (1995) discuss that the data gathered produces a candidate list that can be used to 

produce a budget that is defendable. 

The key relationship in the condition assessment approach is between the facility 

degradation and the budget determination.  There are very important assumptions in the 

condition assessment method that make the method possible.  The assumptions are 

(Uzarski et. al, 1995):  

“Condition is a measurable attribute. 
Raters are capable of making quantitative judgments about condition. 
The judgment of each rater can be expressed directly on an interval scale. 
Variability of judgment is a random error. 
Raters are interchangeable (equally capable of making the required judgment of 
condition).  
Averaging individual rating values can be used to estimate rating scale values.”  

 

By honoring these assumptions (and through the above relationship) the method produces 

a budgetary figure for infrastructure and facility maintenance. 

Budget Manipulation 

Once the basis for the M&R budget model is chosen, it then becomes necessary to 

adapt the budget to the changing environment.  Inflation, age of the facility, and 

degradation are just a few of the reasons to continually adjust the baseline budget.  Barco 

(1994) offers four approaches that are commonly used, a based-budget model, zero-

based-budget model, budgeting by project backlog or budget based on facility attributes 
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(Barco, 1994).  He also identified identified two types of facility attributes that need to be 

considered when adjusting the annual budget.  They are best described as fixed and 

variable attributes.  Table 2 captures the description of each type. 

 

Table 2 Facility Attributes 

Fixed Attribute Variable Attribute 
Location Size 
Facility Type (building, utility, road, etc) Capital Improvements 
Year Acquired Current Value 
Acquisition Cost Replacement Value 

  
 

Fixed attributes are stable with time; therefore they have little impact on the 

annual budget once the baseline is determined.  The trends of the variable attributes drive 

the M&R costs predictions up and down.  The variable attribute trends provide the 

supporting justification for the changes to the annual M&R budget variations (Barco, 

1994). 

 

 

 

Based-Budget Model 

This adjustment method is also known as the ramping approach.  The based-

budget model involves the determination of a baseline budget figure and then increasing 

that baseline annually by a percentage to match inflation.  The method falls under 

criticism after several years of use, because at that point, the budgetary figure has lost its 

correlation with actual M&R requirements.  The simplicity of the model, however, makes 
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the approach popular.  Recent automation advances have increased the accuracy of other 

methods and made them easier to use; thus, the based-budget model is starting to lose 

favor (Barco, 1994).   

 

Zero-Based-Budget Model 

Zero-based budget models re-justify the base each and every year.  While 

providing an accurate picture of the actual budget, this method is prone to wide funding 

swings.  Zero-based budget models introduce a concept of acceptable M&R backlog.  

Managers are allowed to manipulate an acceptable level of incomplete M&R tasks or 

backlog acceptable to their respective organization (Barco, 1994).  

 

Budgeting by Project Backlog 

The project method of budgeting focuses more on the projects than on the 

attributes of the facility.  The facility’s list of required M&R projects can often exceed 

any budget, creating a backlog of work that must be managed.  Therefore, emphasis must 

be placed on prioritization of the projects by upper level management.  The backlog of 

projects needs to be continually manipulated by management.  At times, management 

may decide to compile several small projects into larger comprehensive projects.  The 

emphasis on projects over the attributes makes the accuracy of the project’s cost estimate 

very important.  Inaccurate estimates can result in either not enough work being 

scheduled or too much work being scheduled (Barco, 1994). 

In combining Ottoman’s (1999) four methods of budget determination with 

Barco’s (1994) methods of budget manipulation (or updating), one is left with the matrix 
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shown in Table 3.  Every method of budgeting M&R requirements covers areas of the 

matrix.  The amount of coverage varies with the individual model.  By using this matrix, 

the budget models to be evaluated can be classified. 

 

Table 3 Budget Determination Methods and Budget Manipulation Models Matrix 

 Facility 
Attributes 

Based-Budget 
Model 

Zero-Based-
Budget Models 

Budgeting by 
Project Backlog 

Plant 
Replacement 
Value Methods 

    

Formula Based 
Methods 

    

Life-Cycle 
Methods 

    

Condition 
Assessment 
Methods 

    

 

 

Depreciation/Facility Degradation Modeling 

No one argues that facilities degrade.  Facilities degrade as a result of many 

different factors.  Age and use are the leading contributors (Barco, 1994).   Modeling 

degradation is a complex problem.  Several concerns arise when degradation is simplified 

for modeling deterioration as a stochastic process (Durango-Cohen, 2004).  Modeling 

techniques that use Markovian models that are stationary in time are examples of these 

over simplification assumptions (Durango-Cohen, 2004).  Guillaumot et al. (2004) 

extended a methodology to account for the uncertainty in measuring facility condition 

using the Markov decision process.  They were able to account for the inherent 

randomness of facility deterioration through the use of transitional probabilities.  This 
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methodology captures a great deal more of the uncertainty around facility degradation 

than models utilizing straight-line depreciation methods or sum-of-the-years-digits 

methods (Canada, 1980).  The Guillaumot Markovian model assumes the data necessary 

to perform it is readily available (Durango-Cohen, 2004).  Unfortunately this assumption 

carries a heavy price tag in money and time necessary to collect reliable sets of data, thus 

placing a limit on its effectiveness, particularly in simulations (Durango-Cohen, 2004). 

Never the less, the need for a degradation model exists to accurately evaluate the 

performance of M&R budget models in a dynamic environment.  As a result, the earlier 

presented matrix gains a third dimension.  As shown in Figure 3. 
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Figure 3 Budget Three Dimensional Matrix 
 
 

By gaining a proper understanding of the tools and methods for M&R budgeting 

and the modeling of base infrastructure and facility degradation, the evaluation of the 

various techniques can be accomplished.  Without an in depth understanding of these 

methods, the Air Force civil engineer would have a difficult time developing a tool to 

measure the performance of any budgeting method.  The Air Force continues to train, 

equip, and fight from an aging infrastructure.  It is paramount that its maintenance 

personnel posses the knowledge of these methods and understand how to properly 

evaluate them. 
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III.  Methodology 
 

The methodology for this study is based on a system dynamics approach to 

provide a dynamic evaluation of various recurring infrastructure maintenance funding 

methods.  System dynamics is a methodology for studying and managing complex 

feedback systems (Daum, 2001).  This methodology’s design focuses on the behavioral 

pattern of the outcome of a complex system of relationships or influences, which are so 

strongly interconnected that the study of an isolated individual component would cause 

misrepresentation of the outcomes and would not be representative of the entire system. 

Forrester (1985), the chief proponent of system dynamics since the 1960s was quoted, 

“The value of a model lies not in its predictive ability alone but primarily in the learning 

generated during the modeling process.”  Therefore, the end determinant is to provide the 

studier an in-depth understanding of the relationships and influences in the system, a 

means to manipulate controllable variables or parameters within the system, and a means 

to simulate and predict the impact of parameter changes on the outcome behavior.  The 

conclusions of system dynamics studies are sometimes strikingly different than the 

conclusions drawn from studies done on individual components of the system (Daum, 

2001). 

 

Rationale for the Study 

The rationale for this study is based on creating a dynamic evaluation tool capable 

of simulating the relationship between maintenance actions, maintenance budgets, 

degradation, and serviceability of a facility or infrastructure throughout the facility’s or 



 

26 

infrastructure’s lifespan.  This dynamic study should accomplish the following goals.  

First, the study should accomplish the goal of providing the Air Force civil engineer a 

dynamic evaluation tool for the analysis and development of maintenance budget 

strategies that are capable of prolonging infrastructure and facility life at a satisfactory 

level of serviceability to meet mission objectives.  Secondly, the study should accomplish 

the goal of interpreting the output of the model simulations.  The interpretation of the 

evaluations should present a behavioral difference for evaluating various facility and 

infrastructure maintenance budget strategies in current use in facility and infrastructure 

maintenance today.  Thirdly, the study should make recommendations as to how a 

facility-specific dynamic method can be developed that substantially improves 

serviceability of Air Force facilities and infrastructure, thereby giving a more accurate 

picture of the cost of incomplete preventative maintenance.  

 

Instruments of Data Collection 

The instruments for this study include a review of current literature on facility 

maintenance methods and evaluation techniques, and the development of a dynamic 

simulation and evaluation model for facility and infrastructure maintenance budgeting 

methods using a system dynamics approach.   

 

Modeling Technique 

The system dynamics approach to modeling can be broken into four distinct 

phases.  The first phase is conceptualization, which is best characterized as building a 

mental picture of the model.  Second is the formulation, where the model is written down 
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in a form that can be evaluated.  Third is the testing phase that exercises the model 

through the full range of values.  Fourth and lastly is the implementation of the model in 

which the output is accepted by the end user as valid for prediction.  Once accomplished 

in an iterative process (not merely a sequential order), these four steps yield the modeler a 

dynamic tool for evaluating the system.  These phases are summarized and described in 

Table 4 (Shelley, 2004). 
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Table 4 The Four Phases of Model Construction 

Phase Description of Elements 

 

Conceptualization 

 
Familiarization with the general problem area 
 
Definition of the question to be addressed—either, What caused a 
given development? Or, What are the likely effects of a given policy? 
 
Description of the time development of interest (the reference 
mode)—defining the time horizon and the range of time constants in 
the model. 
 
Verbal description of the feedback loops that are assumed to have 
caused the reference mode (the basic mechanisms)—defining the 
system boundary and the level of aggregation. 
 
Development of powerful organizing concepts. 
 
Description of the basic mechanisms in causal diagram form. 
 

 

Formulation 

 
Postulation of detailed structure—selecting levels, selecting rates and 
describing their determinants.   
 
Selection of parameter values. 
 

 

Testing 

 
Testing of the dynamic hypothesis—Do the basic mechanisms 
actually create the reference mode? 
 
Testing of model assumptions—Does the model include the important 
variables?  Are the assumed relationships reasonable? Are parameter 
values plausible? 
 

 

Implementation 

 
Testing of model behavior and sensitivity to perturbations 

Testing the response to different policies. 

Identification of potential users. 

Translation of study insights to an accessible form. 

Diffusion of study insights. 
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Phase I:  Conceptualization.  The modeler must stay focused on the behavior 

throughout this phase.  In the conceptualization phase, it is necessary to become familiar 

with the general problem.  Paramount to any methodology is clearly defining the question 

to be evaluated by seeking out what has caused the given development and what are the 

likely effects of a given change.  After conceptualization, the next step is to define the 

reference mode or the time horizon for the study and the range of the behavior over the 

time horizon.  The reference mode is defined as the desired or end state behavioral 

pattern that is to be achieved and is most commonly graphically represented with the 

dependant variable portrayed on the y axis with x axis representing time.  Also involved 

in conceptualization is the description of the feedback loop framework that is assumed 

responsible for the reference mode.  Lastly in the conceptualization phase is the 

description and assembly of the basic structures of the causal diagram.  The basic 

structures are composed of stocks (or accumulation points) and flows (or the mechanistic 

representation) that increases or decreases the stock at a prescribed rate through five 

generic flow processes.  The five generic flow processes are compounding, draining, 

production, coincident flow, and stock adjustment.  The arrangement of the basic 

structures is directly related to the respective behavioral outputs.  The end state of the 

conceptual phase is the formation of the reference mode and causal diagram (Shelley, 

2004).  

This phase of the process is most often the most critical and time consuming 

phase of the entire process.  It requires the modeler to compile the most information 

through documentation of methods and processes or through direct interaction with those 

familiar with the methods and processes.  Beginning modelers can often fall prey to the 
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most common mistake in this phase as well.  The desire to try to describe the real world 

and create a depiction of reality shown by flow diagrams rather than staying focused on 

the behavior of the system can derail even the best modeling effort (Shelley, 2004).  

Phase II:  Formulation.  During the formulation phase, the modeler details the 

structure given the established reference mode behavior from phase I.  The modeler 

accomplishes the formulation by assigning levels, rates, and descriptions of their 

determinants.  The modeler also establishes, describes, and defines all parameter values.  

The modeler must pay close attention to maintaining consistency among the units used in 

the system.  The modeler faces a heavy amount of iteration in this phase (Shelley, 2004). 

Phase III:  Testing.  The testing phase is sub-divided into two major categories of 

testing:  testing the dynamic hypothesis and testing the model’s assumptions.  The 

ultimate goal in testing the dynamic hypothesis for the modeler is evaluating the ability of 

the basic mechanisms within the structure to actually produce the expected reference 

mode.  In the second portion of testing, the modeler is checking for the inclusion of all 

pertinent variables, the correctness of the relationships, and the correctness of the 

parameter values (Shelley, 2004).   

Phase IV:  Implementation.  In this phase of the modeling process, the modeler 

seeks to gain validation of the model by end users.  This is accomplished by testing the 

model’s behavior and sensitivity to internal and external influences, demonstration of 

various policies, correct identification of potential users, and understandable translation 

of garnered insights about the system (Shelley, 2004). 
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Subject Population 

The subject population for this study is a representative group of maintenance 

budget strategies for facilities and infrastructure.  The maintenance budget strategies of 

interest are those found to be commonly practiced in facility and infrastructure 

maintenance by organizations or firms that have a large number of facilities or an 

infrastructure plant.  Government agencies like the DoD, major universities, and large 

corporations are the major players. 

 

Data Collection 

The data collection process for this study was done using a computer simulation 

process.  The system dynamics model that was constructed using the above technique 

was electronically coded into simulation software.  The simulation software is the 

STELLA Research version 8.0 software program (High Performance Systems).  STELLA 

conducts iterations of the system and represents the system’s behavior over the prescribed 

time.  For this study, the research period was 100 years.  The study length was 

determined after considering that average facility length is 30 to 70 years (Lemer, 1996).  

The various budgeting methods were simulated over this time period against varying 

degrees of degradation to produce comparative behavior patterns.  The modeler or 

researcher then discusses the findings from the comparisons and insights gained into the 

complex system.  
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IV.  Results 
 

Model Conceptualization 

The system dynamics methodology for this study started with the 

conceptualization phase.  During this phase, the problem was clearly defined.  

Specifically, missed or scheduled maintenance cannot be made up if it is missed then the 

value of the maintenance action is lost.  If the degradation that would have been corrected 

by maintenance is allowed to go unchecked, what is the ultimate impact of the situation 

on the facility or infrastructure?   

It is necessary to define the terms and key assumptions that will be used 

throughout this discussion:  serviceability and degradation.  Serviceability is the 

measurement of a facility’s or infrastructure’s capability to meet its mission requirement.  

Conversely degradation is the wear and tear that has reduced the facility’s capability to 

perform a given mission.  It is assumed that one unit of serviceability is equal to one unit 

of degradation. These two terms are also assumed to have a complementary relationship.  

That is, if a facility has a total value of 100 serviceability units, then the sum of 

remaining serviceability plus degradation equals 100.  This is represented in the 

following equation. 

 

Remaining Serviceability + Degradation Occurred = Initial Serviceability 

 

This is a key relationship and assumption for the modeling process.   
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The second key assumption is that every infrastructure item has a finite value of 

Initial Serviceability which can be degraded.  This value can be assumed or there would 

be no need for the infrastructure item to exist.  Degradation takes away from this value, 

and maintenance actions replace what has been degraded.  In order to create additional 

serviceability, one must complete a major renovation or construct an addition.  The 

serviceability value of a facility can be quantified, but it is extremely difficult to measure.  

Further, initial serviceability is difficult to assign.  For example, justification of assigning 

a value of 200 units to an aircraft shelter and 150 serviceability units to the electrical 

distribution system utilizing the same scale is very difficult.  Therefore, for the purposes 

of this modeling research, the value of total serviceability will be normalized for any 

given facility to 100 serviceability units regardless of the facility type or mission.   

The monetary value of each unit of serviceability also must be established.  The 

assumption will be made that the monetary value (dollars) of a unit of serviceability can 

be determined by taking the construction replacement cost of a facility and dividing it by 

the initial serviceability.  This gives a measure with units of dollars per serviceability.  To 

account for varying costs of facilities within the modeling process, the cost of all 

facilities will be normalized.  Each facility will be assumed to have a monetary value of 

100.     

The next step in the conceptualization phase is hypothesizing the facility’s 

serviceability behavior pattern over time; in other words, the next step is to create the 

“reference mode”.  In research question 3 of Chapter I, the need for understanding the 

typical lifecycle serviceability behavior pattern for base infrastructure and facilities was 

stated.  The initial ideas of how this hypothesized behavior are shown in Figure 4. 
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Figure 4 Conceptual Alternative Behavioral Patterns of 

Serviceability vs. Time 

  

This hypothesis comes from the author’s experience in dealing with facility 

maintenance over the past ten years.  The patterns suggest that facilities and infrastructure 

have an initial phase of life where they degrade slowly.  In this initial phase, the facility 

or infrastructure is new and needs only small amounts of maintenance to correct the 

degradation occurring.  This is followed by a phase of rapid decline as degradation 

increases at a rate that overtakes the impact of maintenance actions.  The end of the 

lifecycle is portrayed as a phase of slow degrading as the facility awaits renovation or 

demolition and final disposal.  This concept was further supported by Lemer’s (1996) 

diagram as discussed in Chapter II.  Adapting Lemer’s (1996) diagram, assuming that 

serviceability is an equivalent term to performance, produces the following diagram 

shown in Figure 5.    

Time (years) 

Serviceability  
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Figure 5 Lemer Behavioral Pattern Seriveability vs. Time 
 
 

Lemer’s (1996) diagram further supports the initial phase of slow degradation 

followed by a rapid decline.  Lemer also adds the maximum serviceability and minimum 

acceptable serviceability levels.  The maximum serviceability line is the same as the 

initial serviceability for the facility.  The minimum acceptable serviceability for the 

facility is defined in Air Force programming policy.  The Air Force policy is that if the 

total cost of the repair work programmed against a facility exceeds 70% of the total cost 

of the facility, then programming should be done for replacement rather than repair.  This 

provides a suitable proxy for the minimum acceptable level of serviceability.  The 

minimum acceptable serviceability level will be assumed at 30% of the total facility or 

infrastructure serviceability.  Therefore, we have the declining S-shaped reference mode 

behavioral pattern for the modeling effort is shown in Figure 6. 
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Figure 6 Reference Model Serviceability vs. Time 
 

      

Implementing system dynamic’s methodology; the influence or causal diagram 

(system influence structure) follows from the behavioral pattern.  Keeping focused on the 

S-shaped decline of serviceability, the dynamic model is developed in small portions.  

Each small portion is then moved through the remaining three phases rather than trying to 

produce the entire model in one pass.   

Using the reference mode, the system dynamics causal diagram is built using the 

basic structural causal mechanisms.  There is not a basic mechanism for this pattern.  

However, the degradation complement relationship with serviceability creates an S-

shaped growth pattern for degradation.  The complementary relationship is shown in 

Figure 7.  
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Figure 7 Reference Mode Serviceability and Degradation 
 

The system dynamics mechanism for the degradation S-shaped growth is 

represented by the influence diagram in Figure 8. 

 

Figure 8 Influence Diagram 
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This influence diagram is then programmed into the STELLA software, with the output 

being shown in Figure 9.  Note the rate constant takes the label wear and tear rate.   

 

 

Figure 9 STELLA Flow Diagram 
 

 The literature review revealed various formulations for degradation based on 

financial depreciation methods and statistical failure models.  These formulations are not 

consistent with the behavioral pattern observed for infrastructure degradation above.  

These depreciation formulations are front-loaded, and rapidly increase in the initial 

phase, and then slowly tail off later in the life cycle.  Therefore, these formulations are 

unsuitable for accurately modeling degradation.  Instead, this model uses a logistics 

equation for degradation: 
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In creating the STELLA flow diagram, the maintenance actions act as a flow; 

therefore, a converter was necessary to allow for further growth of the model.  

Maintenance actions is represented as a standalone flow entity that will allow for the 

budget method to be constructed around it.   After running the simulation, the behavior 

produced is shown in Figure 10. 

 

 

Figure 10 Serviceability and Degradation Output 
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The output of the simulation matches the reference mode.  Therefore, we can 

conclude that the model is performing as expected.  To further validate the model, it is 

necessary to test the wear and tear rate parameter through sensitivity analysis.  This is 

accomplished by running the model simulation through the full range of the wear and tear 

parameter.  The results of the sensitivity testing are shown in Figure 11. 

 

 

 

Figure 11 Wear and Tear Rate Sensitivity Analysis 
 

 

Important to note about Figure 11 is that the underlying shape of the pattern 

remained unchanged; only the slope and curve radius were impacted by changing the 

value of the parameter.  As the wear and tear rate increases, the slope increase, the curve 
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radius decreases, and the life span is decreased.  As the wear and tear rate decreases the 

slope decreases, the curve radius increases and the life span increases.  The wear and tear 

parameter was utilized to get a facility behavioral pattern that would, under unlimited 

budget conditions, produce a facility that, at 50 years service, would have retained 30% 

of the Initial Serviceability of the facility.  This is to say that the facility or infrastructure 

item reached its designed life span as shown in Figure 12.  Therefore, the scaling 

parameter is set for the model of the system to perform in the time frame of interest. 

 

 

Figure 12 Refined Serviceability and Degradation for 50 year life span 

 
 

    

The next step is the inclusion of the budget determination methods in the model.  

These infrastructure maintenance budgetary methods were discussed in detail in Chapter 

2.  The maintenance methods to be included and evaluated by the model are 1) the Air 
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Force’s chosen method of PRV, 2) the condition assessment method, 3) the Sherman-

Dergis formula method, and two control methods:  4) no-maintenance and 5) the 

unlimited budget method.  These five facility maintenance budget methods will be the 

test subjects for the dynamic evaluation model.  As such, the maintenance budgets 

determination strategies also answer the first research question (what budget maintenance 

strategies exist?).   

These budgetary methods give way to relationships within the system of facility 

and infrastructure maintenance.  These relationships were mentioned in Chapter II’s 

discussion of the individual methods.  From these relationships the start of a relationship 

diagram can be developed.  Figure 13 represents these relationships and the feedback 

loop they create.  Figure 13 represents the influences within the facility maintenance 

system through the use of arrows.  Overall, this diagram serves as a baseline since it is 

based on existing literature regarding the various budget methods. 
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 The basic evaluation model is constructed and the next step is to code the budget 

development methods into STELLA.  Note that the budget development methods 

structures are not dependent on the behavior pattern of degradation, but rather on the 

method’s authors who set up the internal relationships to establish how the method 

determines the amount of funding required.  Inclusion of the methods to the model 

produces the final flow diagram from STELLA as shown in Figure 14. Once the budget 
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methods were included in the dynamic model, a user interface was created that would 

allow the tester to manipulate management decisions within the respective budget 

methods to be tested. 
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Figure 14 Full Model STELLA Flow Diagram 
 

   

From the literature review, the answer to research question four produced the 

different controlled influences for each individual method.  For the PRV method, the 

focus control is the percentage of the plant value that would be budgeted for 
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maintenance.  Thus, the user is allowed to manipulate this value within a range of 0% to 

10% based on the range found in the literature.  Within the condition assessment method, 

management controls the time and effort put into the assessment itself.  Therefore, 

management indirectly impacts the accuracy the assessment achieves.  The model allows 

the user to manipulate the level of accuracy for the assessment.  Lastly, within the 

Sherman-Dergis formula, the assumption of a 2/3 infrastructure renewal rate is made 

based on standard industry practices.  This assumption is management driven; therefore, 

the control for the formula method is to vary this renewal fraction.  The two control 

methods have no management control variables.  The policy that management sets has a 

direct control on their budgeting and execution process.  The final flow diagram of the 

model, formulations, and user interface are shown in Appendix A.  It is now possible to 

show, through sequential simulation, how these controllable influences impact the 

infrastructure. 

In evaluating the various methods, a test range was set up for each method.  The 

range of the controllable input was established for each method from the literature.  The 

exhaustive sets of test results for each method are shown in Appendix B.  These results 

are shown with varying degrees of degradation by changing the wear and tear rate which 

represents varying facility types, usage levels, and climatic zones - all of the facility and 

infrastructure attributes put forth by Barco (1994) in Chapter II.  The following is a 

comparative graph showing the serviceability behavioral pattern for each of the five 

methods (see Figure 15). The first overarching conclusion clearly seen from the graph is 

that none of the methods stop degradation from occurring. 
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Figure 15 Comparative Serviceability 
 

 

  In order to control the growth of degradation, the maintenance budget has to be 

extremely high and disproportionate to the replacement cost of the facility, thereby 

making it impractical for facility owners and maintainers to consider.    Therefore, it is 

unrealistic to desire a budget method that stops degradation.  Instead, the desire needs to 

be for a budget method that maintains serviceability above the minimum acceptable 

serviceability throughout the life span of the facility. 

The next overarching conclusion the test results show is that all of the budgetary 

methods fall short of reaching the designed lifespan.  This includes the Air Force’s PRV 

method.  The alarming part of this conclusion is that in the initial phase of the facility’s 

life, the budget methods perform equally and appear to be performing at a level that will 

allow the facility to meet the desired serviceable life.   These misleading results are 
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particularly concerning because, once the degradation growth starts to outpace 

maintenance operations, it is nearly impossible for the maintenance actions to make up 

the lost ground without it becoming cost prohibitive.  These results clearly highlight the 

importance of preventive maintenance.  It is paramount to keep up with degradation even 

though you cannot stop it.  Degradation must be contained early, or it will have a 

synergistic growth rate and compound beyond maintenance control.   

Presently, this is true of the Air Force budgetary method.  The Air Force uses a 

1.4% PRV for facility and infrastructure maintenance and repair budgeting, thus 

answering research question number five.  In the initial phase of the infrastructure’s life 

cycle, the 1.4% PRV looks to be capable of sustaining the facility serviceability for its 

entire life span.  However, as the age of the facility moves out past the 25-year mark, the 

ability of the budgeted maintenance to sustain the serviceability is inadequate and the 

facility’s degradation starts to grow almost unchecked.  This creates a situation in which 

the ability of the facility to meet the mission requirements is diminished to the point of 

direct mission impact, or worse, failure.  Therefore, the answer to research question six 

(is the policy preserving the infrastructure for mission objective sustainment?) is no.  

Furthermore, detailed examination of the Air Force PRV method shows that it can be 

increased ten-fold and still not maintain the minimum acceptable serviceability for the 

facility’s entire life span.  This is reflected in Figure 16 in which the PRV is varied from 

0.25% to 10%. However, a second look at Figure 15 does show that the Air Force’s PRV 

budget method out performs the other methods tested. 
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Figure 16 Comparative Serviceability 
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the budget methods produce a linear cost curve the condition assessment method and 

unlimited budget method.  This does not make good sense since degradation growth is 

not linear. 

 

 

Figure 17 Comparative Maintenance Cost 
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condition assessment method, followed by the unlimited budget method.  The next 

highest cost is the Air Force’s budget method, followed by the lowest cost method which 

is the formula-based method.  While providing serviceability higher than the other 

methods, the Air Force’s PRV method suffers in that it has a disconnect between 

determination and the actual condition of facility.  The final conclusion of the cost 

comparison is that a link needs to be built between the serviceability of a facility and the 

determination of its respective budget.  

The next set of behaviors for comparison is the maintenance actions, as shown in 

Figure 18.  

 

Figure 18 Comparative Maintenance Actions 
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degradation growth is only controllable through prevention.  The condition assessment 

method implies that degradation is being repaired after it has taken place.  This allows 

degradation to start growing.  Once degradation starts to grow, it is uncontrollable 

regardless of how much maintenance actions are increased.  Therefore, preventative 

maintenance techniques are extremely important.  Another parallel between maintenance 

actions and maintenance cost is the fact that the Air Force’s PRV method and formula 

method have a constant level of maintenance, while the condition assessment and 

unrestricted budget method have a growth pattern similar to degradation.  Within the 

PRV and formula method there is no link between degradation and maintenance actions 

but rather between the budget and maintenance actions (i.e., maintenance is constrained 

by the budget).  This constraint allows an amount of degradation to continually go 

unchecked, thereby depleting the overall serviceability of the facility.  Therefore, a link 

needs to be constructed to increase the maintenance actions to address the amount of 

degradation that is not being addressed. 

These conclusions show why it is necessary to use a dynamic evaluation of 

infrastructure methods and not just a snapshot decision analysis tool.  Evaluation tools 

like case studies, multiple criteria decision making alternative based techniques, and even 

value focused thinking techniques fall short of providing the long term longitudinal look 

necessary to evaluate the impact of maintenance on facility and infrastructure 

serviceability.  Degradation and maintenance are not static concepts.  They need to be 

continually evaluated over the life-cycle of the facility or infrastructure.  In failing to look 

at an entire facility life-cycle, the following conclusions are often missed.  None of the 

budgeting methods fully stop degradation.   Once the degradation starts, it rapidly begins 
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outpacing maintenance actions.  It is economically infeasible to correct the situation by 

increasing the maintenance budget.  The initial performance of a budget method is often 

misleading, providing results that seem good at first, allowing maintenance to keep up 

with degradation and provide for good serviceability.  Therefore, Daum (2004) was 

correct there are strikingly different results from system dynamics research than static 

analysis.    
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V.  Conclusion 
 

Summarizing Chapter IV dynamic evaluation’s of the budget determination 

methods are the following conclusions.  First, it was demonstrated that none of the 

methods stop degradation from occurring.  Second, it is was shown that in order to 

control the growth of degradation, the maintenance budget has to be extremely high and 

disproportionate to the replacement cost of the facility, thereby making it impractical for 

facility owners and maintainers to consider.    The third conclusion was that the entire set 

of test subject budgetary methods fall short of reaching the desired designed lifespan.  

The alarming part of this conclusion is that in the initial phase of the facility’s life, the 

budget methods perform equally and appear to be performing at a level that will allow the 

facility to meet the desired serviceable life.  Furthermore, detailed examination of the Air 

Force PRV method shows that it can be increased six-fold and still not maintain the 

minimum acceptable serviceability for the facility’s entire life span. Fourth it was 

concluded that maintenance efforts constrained by the budget are of little to no value at 

all.  The fifth conclusion is that the budget methods produce a linear cost curve except the 

unlimited budget method and condition assessment method.   The last conclusion is that 

degradation growth is only controllable through prevention.  These conclusions about the 

budget determination methods would not have been found in a static decision analysis 

tool and show why it is necessary to use a dynamic evaluation of infrastructure methods.  

After completing this research effort to investigate the methods for maintenance 

repair budgets and develop a facility or infrastructure maintenance dynamic evaluation 

model, the research revealed that there are three major areas requiring further 
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investigation.  The first area is degradation modeling.  The second is using life-cycle cost 

analysis as a basis for determining facility and infrastructure maintenance cost.  The third 

is the apparent disconnect in facility and infrastructure evaluation criteria as it looks at 

financial value rather than serviceability.  Further evaluation of these three areas will 

enable a facility-specific dynamic method to be developed that substantially improves the 

serviceability of Air Force facilities and infrastructure, thereby giving a more accurate 

picture of the cost of incomplete preventative maintenance. 

 Further expanding the first area for further study is the modeling of facility and 

infrastructure degradation.  There are tremendous opportunities within this area for 

dramatic improvement.  Predictive techniques for modeling the behavior of facility 

degradation seem to have been overlooked or ignored by researchers for other efforts into 

constructive materials, maintenance techniques, and maintenance budget strategies.  

Understanding how various facility and infrastructure materials degrade is critical to 

understanding how to develop a budget strategy to maintain facilities or infrastructure 

items.  Degradation cannot be assumed to be too complex to model--it must be explored.  

Current degradation predictive strategies have focused more on the financial concerns of 

the facility and infrastructure owners rather than on the serviceability to meet the mission.  

These methods place too heavy an influence on the value of the facility rather than on the 

serviceability of the facility or infrastructure.  As a result, present methods show 

depreciation, which is typically heavily front-loaded, as a financial function.  These 

methods show the facility or infrastructure to drop in value rapidly in the initial phase of 

its life span rather than the behavior pattern asserted in this research.  Therefore, it is 

necessary for more research to be done to find suitable predictors of facility and 
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infrastructure serviceability and degradation that will allow owners and maintainers to 

more accurately predict where a facility or infrastructure item is in its lifecycle. 

 The second area to expand on is more analysis is needed to provide a better 

understanding of total facility and infrastructure life-cycle cost.  Presently, too much 

emphasis is placed on construction or replacement costs for determining the budget for 

maintenance and repair activities.  These methods capture the complexity and size of the 

facility or infrastructure but neglect other attributes like use, climate, and degradation that 

have gone un-repaired or neglected.  These factors have an adverse impact on 

serviceability and can produce conditions that require increased maintenance levels and 

budgets.  By replacing plant value or replacement value in maintenance budgeting with a 

life-cycle cost base for the percentage methods, a more accurate cost estimate for 

maintenance and repair can be created.  Budgets created under this ideology include the 

facility’s life span and maintenance costs with initial construction values.  The end result 

is a more accurate picture of the total facility or infrastructure costs over the life-cycle of 

the facility.  Then when a percentage is calculated for the annual budget, it will produce a 

budget that will sustain serviceability in light of degradation growth.  This will give 

owners and maintainers the ability to ensure the facility reaches the predicted life span.  

Life-cycle cost analysis will provide a linkage between designers and maintainers to 

create more accuracy in the estimates for budgeters. 

The third area to expand on is facility evaluation criteria are presently based on 

financial value rather than remaining serviceability.  This very real disconnect was briefly 

mentioned earlier in the discussion of degradation modeling.  Facilities in the Air Force 

are replaced based upon programmed estimates of work to be done versus the 
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replacement cost of the facility.  If this ratio (i.e., Cost of Work to be Done/Replacement 

Cost) meets or exceeds 70%, the facility is no longer programmed to undergo renovation 

via repair but is programmed for replacement.  This process is solely focused on financial 

cost estimates of the work to be completed.  The facility’s remaining serviceability is not 

evaluated.  It is assumed that the cost of the repair work accurately represents the 

degradation that has occurred to precipitate the repairs, but does it truly mean the 

serviceability has dropped below the minimum acceptable level presented by Lemer?  

This evaluation is not taking place.  An in-depth evaluation needs to be done to see if 

maintenance actions, or the lack thereof, precipitated the need for the programmed repair 

work.  More research needs to be done to more closely insert remaining serviceability of 

the facility into the repair/replacement decision.  It further needs to be explored to 

examine maintenance actions to ensure they are having the desired impact on slowing the 

degradation growth.  The bottom line is that more research needs to be done into which 

measure is best to use when determining the value of a facility or infrastructure item. 

This research effort has been valuable in two major areas.  First, it has proven the 

value and need for dynamic evaluation of maintenance and repair methods.  Second, it 

has served to bring to light areas that need to be further explored.  As the three areas of 

degradation modeling, lifecycle cost analysis, and the disconnect between facility and 

infrastructure financial value and serviceability are explored, more areas will be 

unearthed that advance the knowledge base of facility maintenance.  These advances will 

serve to better preserve the serviceability of facilities and infrastructure items and keep 

them meeting mission requirements into the future.        
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Appendix A:  Model Content 
 
 

 
Figure 19 STELLA User Interface 
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Figure 20 STELLA Flow Diagram 
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Model Formulations 
 
Degradation(t) = Degradation(t - dt) + (Wear_and_Tear - Repairs__Prevention) * dt 
INIT Degradation = 1 
 
INFLOWS: 
Wear_and_Tear = Wear_and_Tear__Coefficient*(Degradation) 
OUTFLOWS: 
Repairs__Prevention = Degradation*Maintenance_Actions 
Total_Maintenance__Cost(t) = Total_Maintenance__Cost(t - dt) + (Expenditures) * dt 
INIT Total_Maintenance__Cost = Expenditures 
 
INFLOWS: 
Expenditures = Maintenance_Actions*Convertor_Serviceability_to_$'s 
UNATTACHED: 
Budget_Allotment = 
(Dergis_Phillips_Budget+PRV_Budget+Condition_Assessment__Budget+Unlimited_Bu
dget)*No_Maintenance 
UNATTACHED: 
Maintenance_Actions = 
(IF(Degradation*Wear_and_Tear__Coefficient/Max_Serviceability>(Wear_and_Tear__
Coefficient*Budget_Allotment/Convertor_Serviceability_to_$'s)/Max_Serviceability)TH
EN((Wear_and_Tear__Coefficient*Budget_Allotment/Convertor_Serviceability_to_$'s)/
Max_Serviceability)ELSE(Degradation*Wear_and_Tear__Coefficient/Max_Serviceabilit
y)) 
UNATTACHED: 
Serviceability = Max_Serviceability-Degradation 
Assessment__Accuracy = .75 
Bldg_Cost__Adjusted = 
((Renovation_Proportion/Plant_Replacement_Value)*TIME)+(((Plant_Replacement_Val
ue-Renovation_Proportion)/Plant_Replacement_Value)*TIME) 
Condition_Assessment__Budget = 
Condition__Assessment*Convertor_Serviceability_to_$'s*Condition__Assessment_Swit
ch 
Condition__Assessment = Degradation*Assessment__Accuracy 
Condition__Assessment_Switch = 1 
Convertor_Serviceability_to_$'s = Plant_Replacement_Value/Max_Serviceability 
Dergis_Phillips_Budget = 
((2/3*(Plant_Replacement_Value))*(Bldg_Cost__Adjusted/1275))*Formula_Switch 
Formula_Switch = 1 
Maintenance__Intensity = 1.39 
Max_Serviceability = 100 
No_Budget_Restriction = 1 
No_Maintenance = 1 
Plant_Replacement_Value = 100 
PRV_% = .0139 
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PRV_Budget = Plant_Replacement_Value*PRV_%*PRV_Switch 
PRV_Switch = 1 
Unlimited_Budget = 10000000*No_Budget_Restriction 
Wear_and_Tear__Coefficient = .11 
Renovation_Proportion = GRAPH(TIME) 
(0.00, 0.00), (10.0, 30.0), (20.0, 30.0), (30.0, 50.0), (40.0, 50.0), (50.0, 50.0), (60.0, 50.0), 
(70.0, 50.0), (80.0, 50.0), (90.0, 50.0), (100, 50.0) 
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Appendix B:  Budget Method Test Results 
 
 
 

 
Figure 21 PRV Serviceability at 0.06 Wear and Tear Rate 

 

 
Figure 22 PRV Maintenance Cost at 0.06 Wear and Tear Rate 

Comparative Serviceability

0.0 25.0 50.0 75.0 100.0
Year

0

50 

100 
Serviceability: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 -

Comparative Maintenance Cost

0.0 25.0 50.0 75.0 100.0
Year

0

0

1
Total Maintenance  Cost: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 -



 

62 

 
Figure 23 PRV Serviceability at 0.11 Wear and Tear Rate 

 

 

 
Figure 24 PRV Maintenance Cost at 0.11 Wear and Tear Rate 
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Figure 25 PRV Serviceability at 0.16 Wear and Tear Rate 

 

 

 
Figure 26 PRV Maintenance Cost at 0.16 Wear and Tear Rate 
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Figure 27 Condition Assessment Serviceability at 0.06 Wear and Tear Rate 

 

 

 
Figure 28 Condition Assessment Maintenance Cost at 0.06 Wear and Tear Rate 
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Figure 29 Condition Assessment Serviceability at 0.11 Wear and Tear Rate 

 

 

 
Figure 30 Condition Assessment Maintenance Cost at 0.11 Wear and Tear Rate 
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Figure 31 Condition Assessment Serviceability at 0.16 Wear and Tear Rate 

 

 

 
Figure 32 Condition Assessment Maintenance Cost at 0.16 Wear and Tear Rate 
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Figure 33 Formula Method Serviceability at varying levels of Wear and Tear Rate 

 

 

 
Figure 34 Formula Method Maintenance Cost at varying levels of Wear and Tear Rate 
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